Foreign Currency Liabilities, Party Systems and Exchange Rate Overvaluation

Bumba Mukherjee
Associate Professor, Penn State University

Benjamin E. Bagozzi,
Assistant Professor, University of Minnesota

Minhyung Joo,
Ph.D. Candidate, Penn State University
Question: *when* do developing country democracies choose overvalued exchange rates?

Motivation for Research

- Overvalued exchange rate (appreciated domestic currency) is costly for developing economies. Low growth, trade protection.

- Yet developing countries often maintain overvalued exchange rates (Edwards 1989; Frankel 2004; IMF 2011)

- Among developing countries, democracies in particular more prone to adopt and maintain overvalued exchange rates (Crystal 1994; Bates 1997; Eichengreen 2007)
 - Examples: Brazil, India, Philippines

![Currency Overvaluation Chart](chart.png)
Association between democracy and exchange rate overvaluation far more complex; characterized by substantial variation

when do developing country democracies choose overvalued exchange rates?

Answer from open-economy monetary policy model: Interactive effect of Concentration of Net Foreign Currency Liabilities of private banks and party-system (candidate-centered vs party-centered system)
Theory: Overview of Model, Equilibrium and Comparative Static Results

- Extension of Barro-Gordon model—Strategic interaction between the following players:
 - Domestic Private Banks; non-financial firms; policymakers; central bank (inflation-averse)
 - Small-open economy, augmented Phillips Curve

 \[y = \alpha(e - e^*) + u \]

 - Monetary Policy: Trade-off between low inflation and output expansion
 - Firms borrow foreign-currency denominated loans; banks hold foreign-currency liabilities

- Loss functions and Expected profit (utility) functions

\[
L^G = \frac{1}{2}(p_t - p_{t-1})^2 + \frac{\beta g}{2}(y - \bar{y})^2 + [\lambda_g u_b + (1 - \lambda)u_i]
\]

\[
u_i = E(\pi_i) = \theta_i \bar{y} + (1 - \theta_i)y - R\bar{f}e - c_i
\]

\[
u_b = E(\pi_b) = \int_0^1 \phi e(R\bar{f}) h(\theta) d\theta - (1 + r_f) \phi D_f
\]

\[
L^{CB} = \frac{1}{2} [(c)^2 + \gamma(y - \bar{y})^2]
\]
Derive and formally characterize Sub-game Perfect Nash equilibrium from model

Key comparative statics:

\[\frac{\partial \pi_b}{\partial \left[D_j - L_j\right]} > 0 \text{ when } e_j^* > 0 \]

\[\frac{\partial e_G^*}{\partial \phi k} = \frac{\partial e_G^*}{\partial k \phi} > 0 \text{ for } \lambda_g = \lambda_C \]

Causal Story and Hypothesis from Model in Three Parts

- Preference: Banks with high net foreign currency liabilities favor overvaluation…
 concentration of net foreign liabilities and institutional context matters

- High concentration of net foreign currency liabilities…

 - implies that few large private banks hold a large share of the liabilities

 - facilitates collective action between banks; “politically outmaneuver” nonfinancial firms when seeking domestic currency appreciation

- Candidate-centered system: Strong ties between policymakers and banks; policymakers weigh banks interests; less concerned about distributional costs of overvaluation

Hypothesis: Higher concentration of net foreign currency denominated liabilities held by private banks leads to exchange rate overvaluation in candidate-centered developing democracies

- Party-centered system: Policymakers more concerned about output expansion; overvaluation depresses output; resist concentrated banks’ overvaluation demands
Sample, Dependent Variable and Statistical Methodology

- 51 developing country democracies (data availability), 1988-2007

- Dependent variable: Real Exchange Rate (Level) Overvaluation from Rodrik (2008)
 - \(\text{RER} = \ln(\text{exchange rate}/\text{PPP}); \quad \text{PPP} = \text{GDP deflator} \)
 - Estimate via OLS: \(RER_{i,t} = \alpha + \beta(GDP_{\text{per capita}})_{i,t} + T_t + \varepsilon_{i,t} \)
 - RER Overvaluation: Difference between actual RER and predicted value

- Statistical Methodology
 - xtpcse with country fixed effects and lag dependent variable
 - Pooled Mean Group (PMG) Estimator [Pesaran et al 1999]; combination of:

\[
\begin{align*}
\Delta y_{it} &= \phi_i (y_{i,t-1} - \theta' X_{it}) + \sum_{j=1}^{p-1} \beta_{ij}^{*} \Delta y_{i,t-1} + \sum_{j=1}^{q-1} \delta_{ij}^{*} \Delta X_{i,t-j} + \mu_i + \varepsilon_{it} \\
ARDL(p,q)
\end{align*}
\]
Independent variables

- Interact two variables to test hypothesis: (net) foreign liability concentration × candidate-centered dummy and individual components of interaction term

 - Candidate-centered dummy = 1 for candidate-centered electoral systems; e.g. open-list PR

 - Net foreign currency liability concentration of domestic private banks 0-1 index:

\[\sum_{i=1}^{n} f_i^2 \]

Share of each privately-owned banks’ net foreign currency denominated liabilities in the total net foreign denominated liabilities for each country-year

\[f_i^2 \]

Square of aforementioned term

Control variables

Log GDP per capita, log reserves, terms of trade, fixed exchange rate, veto players…
Main Results: Select variables only

<table>
<thead>
<tr>
<th></th>
<th>xtpcse – fe</th>
<th>pooled mean group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short – run</td>
<td>long – run</td>
</tr>
<tr>
<td>Log GDP per capita</td>
<td>.010**</td>
<td>.009***</td>
</tr>
<tr>
<td></td>
<td>(.004)</td>
<td>(.003)</td>
</tr>
<tr>
<td></td>
<td>.019***</td>
<td>(.006)</td>
</tr>
<tr>
<td>Terms of trade</td>
<td>.037***</td>
<td>.055***</td>
</tr>
<tr>
<td></td>
<td>(.012)</td>
<td>(.018)</td>
</tr>
<tr>
<td></td>
<td>.022**</td>
<td>(.010)</td>
</tr>
<tr>
<td>Foreign liability</td>
<td>.067</td>
<td>.050</td>
</tr>
<tr>
<td>concentration</td>
<td>(.099)</td>
<td>(.103)</td>
</tr>
<tr>
<td></td>
<td>.043</td>
<td>(.195)</td>
</tr>
<tr>
<td>Foreign liability</td>
<td>.138***</td>
<td>.134***</td>
</tr>
<tr>
<td>concentration</td>
<td>(.037)</td>
<td>(.036)</td>
</tr>
<tr>
<td>x candidate-centered</td>
<td>.078***</td>
<td>(.043)</td>
</tr>
<tr>
<td>Candidate-centered</td>
<td>.032</td>
<td>.027</td>
</tr>
<tr>
<td></td>
<td>(.085)</td>
<td>(.094)</td>
</tr>
<tr>
<td></td>
<td>.006</td>
<td>(.053)</td>
</tr>
<tr>
<td>manufacturing</td>
<td>.019</td>
<td>.010**</td>
</tr>
<tr>
<td></td>
<td>(.031)</td>
<td>(.005)</td>
</tr>
<tr>
<td></td>
<td>-.012</td>
<td>(.019)</td>
</tr>
<tr>
<td>N</td>
<td>739</td>
<td>739</td>
</tr>
</tbody>
</table>

***,**,* significance, 1% ,5%, 10% level
Marginal effect of *foreign liability concentration* for candidate centered system

![Graph showing the marginal effect of foreign liability concentration on a scale from -0.4 to 1.0. The y-axis represents the marginal effect of foreign liability concentration, and the x-axis represents the foreign liability concentration ranging from 0.25 to 1.0. The graph includes a line for the marginal effect and a dashed line for the 95% confidence interval.](image-url)
Marginal Effect of *foreign liability concentration* in party-centered system
Conclusions and Future Research

- High levels of concentration in net foreign currency denominated liabilities held by domestic private banks in developing democracies leads to exchange rate overvaluation in candidate-centered (but not party-centered) democracies.

- Explains how (electoral) institutions shape banks’ influence over exchange rates, and when exchange rates will be overvalued in the developing world.

- Yields policy implications for (i) managing net foreign currency denominated liabilities held by private banks and (ii) impact of exchange rate overvaluation (e.g. candidate-centered developing democracies characterized by lower growth and more susceptible to financial crisis)